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A training algorithm for multilayer perceptrons is discussed and studied in detail, which relates to the
technique of principal component analysis. The latter is performed with respect to a correlation matrix com-
puted from the example inputs and their target outputs. Typical properties of the training procedure are
investigated by means of a statistical physics analysis in models of learning regression and classification tasks.
We demonstrate that the procedure requires by far fewer examples for good generalization than traditional
online training. For networks with a large number of hidden units we derive the training prescription which
achieves, within our model, the optimal generalization behavior.
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I. INTRODUCTION

Multilayered neural networks can serve as parametriza-
tions of classification or regression schemes �1,2�. Their abil-
ity to approximate any reasonable input-output relation to
arbitrary precision is achieved by interconnecting sufficiently
many identical, simple processing units. The most attractive
feature of such devices is their ability to learn from example
data.

In supervised learning, the choice of the network param-
eters or weights is based on a set of examples of the objec-
tive task. Frequently, the training procedures are guided by
the optimization of appropriate cost functions which measure
the network performance with respect to the available data.
In regression problems, for instance, gradient based methods
can be used to minimize the quadratic deviation of the net-
work output from the target values, the so-called training
error.

After training, the network implements a hypothesis or
approximate realization of the unknown rule. Its successful
application to novel data—which was not contained in the
training set—has been termed generalization and it is the
ultimate goal of supervised learning. In a continuous regres-
sion problem the generalization error would quantify, for in-
stance, the expected quadratic deviation for a test input. In
the context of classification, the generalization error corre-
sponds to the probability of misclassifying novel data.

One key objective of the theory of learning is the evalu-
ation of learning curves, i.e., the generalization error after
training as a function of the number of examples in the ex-
ploited data set. In this context, methods from the statistical
physics of disordered systems have been applied successfully
in the analysis of model learning scenarios, see Refs. �1,2�
for reviews. The key ingredients of the approach are �a� the
consideration of large networks with many degrees of free-
dom, i.e., the thermodynamic limit and �b� the performance
of averages over the stochastic nature of the training process
as well as over the disorder contained in the training data. In
doing so it is possible, for instance, to evaluate typical learn-
ing curves for a given network architecture, rule complexity,
training procedure, and specified statistical properties of the
example data.

Artificial neural networks are frequently assembled from
many simple structures which repeat over the network. As a
consequence, the occurrence of symmetries is practically in-
evitable. It has been demonstrated within a variety of learn-
ing situations that the properties of networks in the training
phase may depend strongly on these symmetries �1,2�. In
multilayered neural networks the output is often invariant
under exchange or permutation of the network branches con-
necting to the so-called hidden units. This permutation sym-
metry has to be broken in the course of learning in order to
yield good generalization behavior.

In offline or batch training the entire given set of example
data is used in defining a cost function. The typical outcome
of training can be studied in the framework of equilibrium
statistical physics by treating the weights as thermodynamic
variables related to a formal energy which corresponds to the
cost function �1,2�. Accordingly, a temperaturelike parameter
controls the typical energy or tolerated training error. In such
a setting, the symmetries can lead to the emergence of phase
transitions, e.g., in a discontinuous drop of the generalization
error at a critical size of the training set �1,2�.

Another important model scenario is the widely investi-
gated online training of continuous feedforward neural net-
works �3�, for instance, by use of stochastic gradient descent
�4�. Here, one finds pronounced plateau states in the learning
curves, see, e.g., Refs. �4–7� for further references. Success-
ful learning requires hidden unit specialization, i.e., the
breaking of the permutation symmetry. This effect can be
delayed significantly, if no a priori knowledge about the tar-
get rule is available.

For large networks trained from N-dimensional random-
ized i.i.d. example inputs, a statistical physics analysis of
online gradient descent has been done for various learning
situations. These investigations show that, without initial
specialization, successful training beyond the plateau states
is impossible if the number of examples grows linearly with
N, i.e., with the number of adjustable parameters �4,6�. Note
that also optimized training schedules or modified gradient
procedures as studied in, e.g., Refs. �8–10� require initial
nonzero specialization. Analogous effects have been
demonstrated in the context of classification problems for
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the training of networks with binary units, see, e.g.,
Refs. �1,2,11–13�.

The question arises whether these findings reflect a genu-
ine difficulty in the training of multilayer networks or just
result from the use of inappropriate training schemes. A ma-
jor purpose of this work is to demonstrate that the latter is
the case. To this end we put forward and investigate in detail
a recently proposed alternative approach to the supervised
training of multilayered networks which is applicable to re-
gression as well as classification problems �14�.

The key idea of the procedure is to effectively reduce the
dimensionality of the learning problem in a first step. It cor-
responds to performing a principal component analysis
�PCA� with respect to an appropriately chosen correlation
matrix of the example data. In the second phase of training,
the necessary specialization can then be achieved by adapta-
tion of a few parameters, the number of which increases only
quadratically with the number K of hidden units in the
system.

In order to demonstrate the potential usefulness of the
suggested training scheme, we investigate its typical proper-
ties in model scenarios of regression and classification. We
demonstrate that in both cases good generalization is achiev-
able if the number of examples is only linear in N, without
the requirement of a priori specialization. The algorithm re-
tains the most attractive feature of online training, as the
example data are not memorized explicitly and storage needs
do not grow with their number.

The paper is organized as follows. In Sec. II we outline
the model situation, present our algorithm, and discuss its
basic ideas. In Secs. III and IV we present the theoretical
analysis of the two phases of training. Results are discussed
and compared with Monte Carlo simulations of the training
process. The theory is extended to networks with a large
number of hidden units in Sec. V. In Sec. VI we demonstrate
how variational methods can be used to optimize the training
prescription with respect to the generalization behavior. Fi-
nally we summarize and conclude by discussing open ques-
tions and potential follow-up projects.

II. IDEA AND ALGORITHM

As a prototype multilayer architecture, we consider a
committee machine �CM� with K hidden units. Its output � is
defined by the activation functions h�x� in the hidden layer,
g�x� in the output layer, and by the K parameter vectors
Bi , i=1,2,… ,K:

��BT�� = g„f0�BT��… , �1�

f0�BT�� = K−1/2�
i=1

K

h�Bi
T�� , �2�

where ��RN is the input vector and B= �B1 ,… ,BK� is the
N�K matrix of the unknown parameter vectors Bi�RN. In
the following, we will restrict our analysis to the case of
orthonormal vectors Bi

TBj =�ij.
The activation function of the hidden units is assumed to

be odd, h�−x�=−h�x�, and bounded. Whenever numbers are

given, they refer to a sigmoidal of the form h�x�= l�erf��x�
with ��0.

We will consider two variations of the above basic archi-
tecture which are suitable for classification and regression
problems, respectively. The two cases differ in the choice of
the output activation function g�x�.

�i� Regression, soft committee machine. An invertible
function g�x� realizes continuous network outputs. Here we
will concentrate on the case g�x�=x and use the term soft
committee machine �SCM� for the corresponding network.

�ii� Classification, hard committee machine. The choice
g�x�=sgn�x� corresponds to a binary classification of input
data, we will refer to the architecture as the hard committee
machine �HCM�. Here, the limiting case h�x�=sgn�x� for the
sigmoidal hidden unit activation represents a network with
only binary units.

Clearly, the rule complexity that can be considered within
our restricted model is limited. Nevertheless we expect the
setting to capture the essential features of supervised learning
in multilayered networks to a large extent. Modifying, for
instance, the SCM to become a universal approximator re-
quires only one additional adaptive parameter per hidden
unit and the relaxation of the assumption that Bi

TBj =�ij �15�.
This would complicate the analysis in the following without
providing further insight into the problems addressed here.

The ultimate goal of learning is to estimate the parameter
vectors Bi, which we shall refer to as teacher vectors, from a
training set P of P examples ��	 ,��BT�	�� of the input-
output relationship. A good estimate J= �J1 ,… ,JK� will re-
sult in a small generalization error 
g�J�.

Throughout the following we assume that all input data
consist of independently drawn random components with
zero mean and unit variance. Writing �¯�� for the average
over the corresponding probability distribution of an input �,
this is


g�J� = �
1

2
����BT�� − ��JT���2��, �invertible g� ,

1

2
�1 − ��BT����JT����, �g = sgn�x�� . 	 �3�

Note that for HCM networks with g�x�=sgn�x� ,�= ±1,
the generalization error 
g indeed gives the probability for
the misclassification of a random input since
�1−��BT����JT��� /2� 
0,1�.

Throughout the following, the prefactor l� in the hidden
unit activation h�Bi

T��= l�erf��Bi
T�� will be taken to satisfy

the constraint �h2�Bi
T����=1. Standard online methods of

learning aim at improving the student performance by itera-
tive modifications of the network parameters, each based on
only a single example. Typically, they display two different
relevant scales for the number of examples on which learn-
ing proceeds: A single, common weight vector W�RN

shared by all hidden units is quickly obtained from a number
of examples linear in N. It corresponds to a plateau state with
an intermediate value of 
g �4–6�. Further improvement of 
g
requires specialization of the hidden units, i.e., the breaking
of permutation symmetry. Without a priori knowledge, i.e.,
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initial specialization, the plateau can only be left after pre-
senting a much larger number of examples which is super-
linear in N. Results published in, e.g., Refs. �4,6� suggest that
the required number of examples should grow as N ln N,
instead.

Several methods have been devised to improve the suc-
cess of training in this context. These include sophisticated
learning rate schedules, prescriptions using second order de-
rivatives of the error measure, or other concepts that have
proven useful in offline training. These methods can reduce
the length of plateaus significantly when starting with little
initial specialization, see, e.g., Refs. �8–10�. However, the
problem remains that without initial knowledge, successful
specialization and good generalization require a number of
examples which is much larger than the dimension KN of the
parameter space.

In the following we will present a method which, indeed,
allows for successful training from a number of examples
that grows linearly with the number of network weights.
Hence, we will consider training sets of size P=�KN with
the accordingly rescaled number of examples �.

The very idea of our method is to decrease the dimension-
ality of the problem in a first step. A principal component
analysis �PCA� of a properly defined N�N matrix CP re-
duces the task to an optimization problem in only K2 dimen-
sions. The matrix CP is computed from the outer products of
the input vectors � weighted by a function of the known
teacher output. It may furthermore depend on the field WT�
of an auxiliary perceptron with weights W�RN.

In an iterative formulation of the scheme, the update of
matrix C	 and auxiliary weight vector W	 upon presentation
of example 	+1 is written as

W	+1 = �	 + 1�−1�	W	 + ��BT�	+1��	+1� , �4�

C	+1 = �	 + 1�−1�	C	 + �	+1��	+1�T

� FW	T

�W	�
�	+1, f0�BT�	+1��� . �5�

While the choice of Hebbian learning, Eq. �4�, for the esti-
mation of the auxiliary perceptron vector W might be re-
placed with more sophisticated estimates, we restrict our
analysis here to this particularly simple case in the following.
The weight function F in Eq. �5� has to be specified in order
to define a particular training algorithm. Its choice is in the
center of the following analysis.

In regression problems, i.e., for g�y�=y, a particularly
simple choice for the weight function is F�x ,y�=−y2, which
does not make use of the auxiliary weight vector. This cor-
responds, in a sense, to an extension of Hebbian learning,
taking into account correlations of the terms ��

Since only the value of �, as defined in Eq. �1�, is avail-
able to the training algorithm, the specific transfer function g
can restrict the possible dependence of F�x ,y� on y, as, for
instance, in the case of the HCM with g�y�=sgn�y�. As we
will demonstrate in the following section, one simple and
successful choice of the weight function for classification

with an HCM is F�x ,y�=��−xy�. It compares the student
output with that of the auxiliary perceptron and puts empha-
sis on examples where they disagree.

The limiting case P→ reveals how the spectrum and
eigenvectors of CP are related to the unknown teacher vec-
tors, and how this relation is influenced by the choice of the
weight function F. Assuming that the components �i

	 are
independent Gaussian random variables with zero mean and
unit variance, it is straightforward to analyze the spectrum of
CP for P→. In this limit the auxiliary perceptron weights
satisfy the condition WP�Bav with

Bav = K−1/2�
i=1

K

Bi �6�

and

�WP�T�

�WP�
= Bav

T � = fav�BT�� . �7�

The eigenvalues of CP are found easily, as—for the theoret-
ical analysis—we can choose a coordinate system that sim-
plifies the problem very much. The examples are split into
the teacher space components yi and orthonormal compo-
nents zi , i=1,2,… ,N−K. Thus it is easily seen that the
orthonormal space is an eigenspace with eigenvalue �0.
Due to the permutation symmetry of the hidden units, in the
teacher space one symmetric eigenvector Bav with eigen-

value �̄ and an �K−1�-dimensional eigenspace spanned by
B1−Bj �j=2,… ,K� with eigenvalue �� can be identified:

�0 = �z1
2�z�F„fav�y�, f0�y�…�y = �F„fav�y�, f0�y�…�y ,

�̄ = ��y1 + �K − 1�y2�y1F„fav�y�, f0�y�…�y ,

�� = ��y1 − y2�y1F„fav�y�, f0�y�…�y , �8�

where y�RK is the vector of normally distributed random
variables yi and the short-hand fav�y� is defined in Eq. �7�.
Bav itself is of little interest since for large P one also has
WP�Bav, and it is thus simpler to use Hebb’s rule �4�. The
eigenspace of �� is the one we wish to identify by PCA.

Here the importance of properly selecting the weight
function F is evident: �� should be a distinct, extremal ei-
genvalue, so that its eigenspace can be found by PCA. Nu-
merically, it is easiest to compute the relevant eigenspace if
�� is the largest eigenvalue. Hence, we shall only consider
such choices for F.

For a finite number P of training examples the degeneracy
in the spectrum is broken by random fluctuations. Neverthe-
less, a computation of the N� �K−1�-dimensional matrix of
the eigenvectors

� = ��1
P,…,�K−1

P � �9�

of CP associated with the largest eigenvalues, yields an em-
pirical estimate of the space spanned by the difference vec-
tors B1−Bj. Together with WP, this yields an estimate of the
teacher space. Training a given network is thus reduced to
finding a K�K matrix �, such that the set of student vectors
J= �WP ,��� minimizes 
g�J�. We want to optimize the de-
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tection of the teacher space by choosing F carefully. The
ultimate aim is to lower the minimal 
g�J� which can be
obtained by optimizing � in the second training phase.

In the following, we address central aspects of the proce-
dure from a theoretical point of view and test the predictions
in Monte Carlo simulations of the learning process. First, the
overlap of the K−1 extremal eigenvectors with the teacher
space is calculated for matrices CP defined by general archi-
tectures �g ,h� of the teacher, see Eq. �1�. It is measured by
the subspace overlap

� = �K − 1�−1/2Tr��BTB�T�1/2, �10�

where � is defined in Eq. �9�. This is a sensible measure
because � is invariant with respect to orthonormal reparam-
etrizations of � and it attains its maximal value of 1 if and
only if the � j

P lie in the space spanned by the Bi. Hence, �
can be interpreted as the cosine of the “angle” between the
subspace spanned by the � j

P and the one spanned by the
teacher vectors Bi.

Next, we obtain a prediction for the achievable generali-
zation error given the subspace overlap �. Furthermore, in
the limiting case of K→, the equation for � is solved ana-
lytically. This enables us to determine the optimal weight
function F with respect to the typical generalization behavior
in large networks, see Sec. VI.

III. TEACHER SPACE VIA PCA: THEORETICAL
ANALYSIS

A good weight function F will result in a large subspace
overlap � obtained from a given number of examples P. In
order to identify the optimal weight function for a given
architecture, we need to calculate the typical value of � for
training sets with P examples for general F, first.

The following calculations rely on the thermodynamic
limit N→, i.e., large input layers. This allows us to intro-
duce order parameters and evaluate the corresponding parti-
tion function and free energy in terms of a saddle point in-
tegration. We choose the number 	 of examples growing
linearly in KN and introduce 	̂ as the corresponding rescaled
quantity 	= 	̂KN.

In the following, we restrict the analysis to weight func-
tions that yield an estimate of the teacher space via the
eigenspace of the K−1 largest eigenvalues. If a given F pro-
duced such an estimate via the eigenspace of the K−1 small-
est eigenvalues, we could apply the transformation F→−F.

The eigenspace of the largest eigenvalue of CP can be
found by maximizing XTCPX with respect to the
N-dimensional vector X of length 1. Hence, we consider the
partition function

Z =� dX exp��PXTCPX� , �11�

where the integration is over the unit sphere in RN. For large
N the typical properties of the maximization problem are
found by calculating the training set average �ln Z�P and tak-
ing the limit �→. The replica trick is used to evaluate the
average of the logarithm via limn→0�n�Zn�P and we will pro-

ceed assuming replica symmetry. The disorder averaged par-
tition function Zn of the n-fold replicated system reads

�Zn�P = �� dX�n�H�P,X�n���
P

, �12�

where the integration is over n copies of the unit sphere and

H�P,X�n�� = �
	=1

P

�
a=1

n

e��	,a�XaT�	�2

with

�	,a � FW	−1T
�	

�W	−1�
, f0�BT�	�� .

In contrast to many related problems, the Gibbs weight
H�P ,X�n�� does not factorize over the examples, here. This is
due to the dependence of �	,a on W	−1. So, in a first step, we
rewrite the training set average as

�H�P,X�n���P = ��e��a=1
n �P,a�XaT�P�2��PH�P�,X�n���P�

,

where P� is the training set with the last pattern removed.
The �P average depends on the Xa via their mutual overlaps
and via their overlaps with the Bi and with WP−1. Among the
latter, the dynamic overlaps XaTWP−1 are rather troublesome
from a technical point of view. But WP−1 is estimating Bav,
whereas a vector picked from the Gibbs density, see Eq. �11�,
estimates an eigenvector orthogonal to Bav. So, it is hardly
conceivable that the Gibbs density is concentrated on WP−1

in the thermodynamic limit just due to random fluctuations.
Hence, we assume and exploit that XaTWP−1=0.

A second point is, that the average over �P depends on the
overlaps between the teacher vectors and WP−1. Due to this
fact, it depends on all of the previous examples, even if
XaTWP−1=0, and the Gibbs weight still does not factorize for
finite N. But Bi

TWP−1 is self-averaging for N→, and so the
averages over �P and P� do decouple in this limit.

We thus obtain, in the thermodynamic limit, the ratio of
the average Gibbs weight for P and P−1 patterns as

E��,X�n�� =
�H�P,X�n���P

�H�P�,X�n���P�

=��
a=1

n

e��XaT�P�2F„r���Bav
T �P+�1−r���2�,f0�BT�P�…�

�P,�

,

where � is a zero mean, unit variance Gaussian and indepen-
dent of �P. Further, r��� is the overlap Bi

TWP−1 which for
large N is of the form

r��� = �1 + cg,h/�K���−1/2, �13�

where the coefficient cg,h depends only on the activation
functions g and h.

In summary we obtain

BUNZMANN, BIEHL, AND URBANCZIK PHYSICAL REVIEW E 72, 026117 �2005�

026117-4



�Zn�P =� dX�n�expKN�
0

�

d	̂ ln E�	̂,X�n��� . �14�

We have thus recovered a standard situation, since E�	̂ ,X�n��
depends on X�n� only via the overlaps XaTXb and XaTBi.

Now, by the usual arguments, detailed in the Appendix, a
replica symmetric parametrization allows us to calculate
M���, the typical value of maxXN−1XTCPX for large N:

M��� = max
R

min
�

1 − RTR

2�
+ �KG„�,1 − RTR + �RTy�2

… .

�15�

Our main interest is to obtain the value of the K-dimensional
vector R which maximizes Eq. �15�. This gives the typical
overlap BTX of the vector maximizing XTCPX with the
teacher space. Further, the functional G used in Eq. �15� is
defined by an average over an isotropic K-dimensional
Gaussian y with zero mean and unit variance components as

G„�,��y�… =
1

�
�

0

�

d	̂���y��G„yp�	̂�, f0�y�…���y

G„yp�	̂�, f0�y�… =
F„yp�	̂�, f0�y�…

1 − 2�F„yp�	̂�, f0�y�…
,

yp�	̂� = r�	̂�fav�y� + �1 − r�	̂�2� . �16�

Since Eq. �15� is a quadratic form in R, we rewrite it as

M��� = max
R

min
�

RTA���R + a��� , �17�

where a���=1/2�+�KG��,1� and the K by K matrix A���
has elements

Aij��� = �KG��,yiyj� − �ij 1

2�
+ �KG��,1�� .

To further analyze Eq. �17�, assume we have found the solu-
tion ��R� of the minimization in � for a given choice of R.
We then need to maximize RTA���R��R+a���R��. The gradi-
ent with respect to R of this function is simply 2A���R��R,
since ��R� is stationary. So the maximization problem can
only have a solution R�0 if A���R�� is singular and such a
solution is an eigenvector of A���R�� with eigenvalue 0.

The eigenvectors of A do not depend on �. One eigenvec-
tor, with eigenvalue A11+ �K−1�A12, is �i=1

K ei, where
e1 ,… ,eK is the standard basis of RK. Other eigenvectors are
e1−ej �j=2,… ,K� and these have the eigenvalue A11−A12,
with degeneracy K−1.

If the weight function F is chosen properly, A11−A12 is the
larger of the two eigenvalues and defines a space, where Eq.
�17� is indeed maximal. Due to its degeneracy, our analysis
of the properties of the single vector X maximizing XTCPX in
fact yields the properties of the K−1 eigenvectors of CP with
the largest eigenvalues in the thermodynamic limit. Also due
to degeneracy, we may parametrize Eq. �17� by setting R
=��e1−ej� /�2 to obtain an extremal problem in only two
variables � and �. Note that � is then indeed the subspace

overlap introduced in Eq. �10�. Now, one easily sees that if
Eq. �17� yields a nonzero �, the solution satisfies

0 = A11��� − A12��� ,

�2 = −
a����

A11� ��� − A12� ���
,

where the prime denotes the differentiation with respect to �.
For later use, we note that a more explicit version of these
equations is

0 = �KG„�,�y1 − y2�2 − 2… −
1

�
, �18�

�2 =
1 − 2�2�KG���,1�

1 + 2�2�KG�„�,�y1 − y2�2 − 2…
. �19�

An explicit solution is possible if G�� , ¯ � does not de-
pend on the number of examples presented. On the one hand,
this is true if the weight function is of the form
F(yp�	̂� , f0�y�)= f�g(f0�y�)�. For the soft committee machine
such weight functions can be found, indeed, e.g., f�x�=−x2

or f�x�=−x2+1, which is a minor modification of the simple
analogy to Hebbian learning. Note, however, that in cases
where a good estimate of the perceptron vector is available
such choices of f are inferior to the more general ansatz
which includes a dependence of F on WT�.

In order to test the theoretical predictions for the subspace
overlap � we have performed Monte Carlo simulations for,
both, SCM and HCM with K=3 three hidden units. Here, we
have chosen the following weight functions.

�i� Regression, SCM with g�x�=x ,h�x�= l1erf�x�. The
choice F�x ,y�=1−y2 is a minor modification of the example
discussed in Sec. II, but improves the result considerably.

�ii� Classification, HCM with g�x�=h�x�=sgn�x�. The
weight function F�x ,y�=��−xy� corresponds to selecting ex-
amples on which the committee machine and the auxiliary
perceptron disagree. Precisely these examples should contain
considerable information about the internal parameters of the
committee machine.

Simulation results for finite N are shown in Fig. 1 for the
SCM and in Fig. 2 for the HCM, respectively. In both cases
they are in good agreement with the theoretical prediction in
the limit N→ for the subspace overlap �. Its dependence
on the rescaled number of examples �= P / �KN� displays a
second order phase transition from �=0 at small � to non-
zero values for ���c. This behavior is reminiscent of the
results found in Ref. �16� for unsupervised principal compo-
nent analysis of structured data. Note that the critical value
�c for the HCM is considerably larger than for the SCM.
This agrees with the expectation that training a network with
only binary units should be harder than a regression problem,
in general. A detailed discussion of the dependence of �c on
the weight function F will be given in Secs. V and VI.

IV. FROM PCA TO THE STUDENT NETWORK

Student vectors are constructed by linear combinations of
the vector W estimated via Eq. �4� and the eigenspace �
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= ��1
P ,… ,�K−1

P � of the K−1 largest eigenvalues of the matrix
given in Eq. �5�. The K2 optimization parameters are orga-
nized into a K�K matrix �, thus the student vector is J
=v� ,v= �W ,��. The aim is to minimize the generalization
error �3�. In contrast to the usual online learning, we fit only
a finite number of parameters, which lowers the risk of over-

fitting. To facilitate an exact analysis, we use P̂ new ex-
amples in the training set and proceed as follows.

�i� Regression, SCM with g�x�=x in Eq. �1�. Here, simple
on-line gradient descent can be chosen as an iterative opti-
mization scheme. Given the example vector � and a teacher
output � the update is �→�+�� where �� is a function of
the fields of the hidden units y= �v��T�

��ij = ��� − f0�y��yih��yj� . �20�

�ii� Classification, HCM with g�x�=sgn�x� in Eq. �1�. For

the HCM we choose the update following �13�: Only if the
outputs of teacher and student differ an update step is per-
formed. Compared to Eq. �20� the derivative of the activation
function of the hidden units is replaced by � exp�−syj

2�, i.e.,
only those hidden units with fields close to zero on the scale
set by the parameter s−1/2 are updated considerably, and the
direction is given by the teacher output

��ij = ��„− �f0�y�…�yiexp�− syj
2� . �21�

For simulations, the learning rate � is chosen �N�, where

�� �−1,0� and P̂� PN� with �� �−1−� ,0�. In the limit N

→ this means that �→0 but P̂�→, since P�N. Thus,
the gradient descent—for the invertible output unit of the
SCM—turns into a deterministic search which is guaranteed
to converge to a minimum of the generalization error. Note

that with these scalings P̂ / P→0 for large N, so only a neg-
ligible number of additional training examples is needed for
the online procedure in the second phase of training.

In Figs. 1 and 2, results for K=3 show how the increasing
subspace overlap � does affect the generalization error.
While for ���c the generalization error drops due to an
increasing overlap r of the perceptron vector, it does not
show a plateau, but the steeply increasing � above �c leads to
a further decrease of the generalization error.

In Sec. III we presented the theoretical analysis of the
subspace overlap � between the teacher space and the eigen-
space obtained via PCA �10�. It results in Eq. �13� for the
typical overlap of the estimated averaged teacher vector W
with Bav in Eq. �6� after 	̂KN examples in the limit N→.
Under the assumption that there exists a minimum of the
generalization error which is unique up to permutations of
the hidden units, the final state is one of minimal generaliza-
tion error in the space spanned by v= �W ,��. Thus, we are
able to calculate the resulting value of 
g after the gradient
descent given the overlaps r and � by identifying the mini-
mal generalization error.

In the limit r→1,�→1, the teacher space is perfectly
described by the PCA and the Hebb vector, thus the minimal

g drops to 0. To obtain numbers for more general cases, we
need to identify the minimal achievable value of 
g when the
matrix of student vectors is constrained to have the form v�.
Each of the columns of v can be uniquely decomposed as
vi=ni+bi, where ni is orthogonal to the subspace spanned by
the teacher vectors and bi is in this subspace. We assume that
for large N, the ni as well as the bi are orthogonal to each
other. While this could be checked for the PCA vectors by a
replica analysis of maximizing XTCPX+YTCPY under the
constraint XTY =0, we have not done this, since the assump-
tion seems plausible. Now, for any �, the assumption enables
us to calculate the overlaps BTv� given � and r, and thus the
generalization error of the optimal student in the restricted
space. So, also for the theoretical analysis, we have to solve
the K2-dimensional problem of finding an optimal �.

Since this becomes cumbersome for large K, we exploit
the symmetries of the problem in the following manner. By
construction, there exists an orthogonal matrix �0 mapping
the projections bi onto the teacher vectors B= �b1 ,… ,bK��0.
In a naive guess one might assume that an optimal student J

FIG. 1. Regression with an SCM: results for K=3 hidden units
and activation functions g�x�=x ,h�x�= l1erf�x�. The increasing
curve displays the evolution of the subspace overlap � �left axis�
with the rescaled number of examples �= P / �KN�. The decreasing
curve corresponds to the generalization error 
g �right axis� as
obtained in the second stage of our procedure. For 
g, the value
of � refers to the total number of examples used in both stages,

�= �P+ P̂� / �KN�. Solid lines show the theoretical predictions for
the thermodynamic limit N→. Symbols mark the results of simu-
lations with N=400 �open symbols� and N=1600 �filled symbols�,
on average over five independent runs. Where not shown, error bars
are smaller than the symbol size.

FIG. 2. Classification with an HCM: results for K=3,g�x�
=h�x�=sgn�x�, all other details as in Fig. 1. Note that significantly
larger values of � are required for successful training than in the
case of regression, cf. Fig. 1.
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in the restricted space is given by v�0, since nothing can be
done about the noise vectors ni. But since r and � are differ-
ent in general, this need not be the case, and we use the
ansatz J=�1���2WP��1

P
¯�K−1

P ��0. Here, the parameters �1

and �2 allow us to control the length of the vectors in J and
their correlation with Bav. From �1 ,�2 the overlaps with the
teacher space and each other are easily found as

Rij =
�1��2r − ��

K
+ �ij�1�, Qij =

�1
2��2

2 − 1�
K

+ �ij�1
2

without requiring knowledge of �0. Hence, for the theoretical
analysis, we only need to solve a two-dimensional optimiza-
tion problem.

To obtain 
g from the order parameters, we need to
specify the activation function of the hidden units h in Eq.
�2�. Given a linear activation of the output unit g�x�=x in �1�,
we do not have to evaluate the integral over the 2K corre-
lated fields in the hidden units numerically. It is solved ana-
lytically in Ref. �5�, and we find the minimum on the two-
dimensional manifold numerically.

For the hard output unit g�x�=sgn�x�, we do not know of
an analytic solution of the integral. We describe the fields in
the student by a random variable for the part correlated with
the teacher and K independent random variables. After the
average over the K independent variables is done, the mini-
mization involves in each step a �K+1�-dimensional integral.

The resulting learning curves 
g��� for an SCM and HCM
with K=3 hidden units are shown in Figs. 1 and 2, respec-
tively. For comparison, the results of Monte Carlo simula-
tions of the training process are displayed as well. The sec-
ond order phase transition at �c, which is clearly visible in
����, persists in the generalization error 
g��� as a kink in
the learning curve which marks the onset of specialization.

V. LARGE K THEORY

In principle one can use the results in Sec. III to obtain the
subspace overlap � for any given weight function F and
number of hidden units K. However, the obtained equations
are not very transparent. We thus exploit the major simplifi-
cations of the theory in the limiting case of many hidden
units, i.e., K→ with K�N.

The first observation is that for large K the Hebb vector
will be learned much faster than the subspace overlap � in-
creases. The reason is that only on the order of N examples
are needed for the former while a nontrivial result for � will
require at least O�KN� examples. So, in this limit we can
assume that r=1 already for small � and this simplifies the
functional G�� ,��y�� in Eq. �16� considerably:

G��,��y�� = ���y�G„fav�y�, f0�y�…�y , �22�

where fav�y� is defined in Eq. �7�. To find the matrix coeffi-
cients which determine � in Eq. �19�, we need to evaluate
G�� ,1� and G�� , �y1−y2�2−2�. For large K one is tempted to
argue that f0�y� becomes Gaussian to simplify the average
over the K fields y1 ,… ,yK in Eq. �22�. While this yields a
useful result for G�� ,1�, for the second term one finds that
G�� , �y1−y2�2−2�=0 for large K. This, in turn, would imply

that in the large K limit only the trivial result �=0 could be
obtained when using the PCA with �KN examples.

To determine the relevant scale of the learning curve, we
need to evaluate the large K asymptotics of G�� , �y1−y2�2

−2� more precisely. Taylor expanding the y1 and y2

dependence of G(fav�y� , f0�y�) yields that up to O�K−3/2�
corrections

G��,�y1 − y2�2 − 2�

=���y1 − y2�2 − 2��
s=0

2

�
i+j�s

gi,j

i ! j!

�
�y1 + y2�i�h�y1� + h�y2�� j

K�1/2�s �
y1,y2

, �23�

where

gi,j =�G�i,j�K−1/2�
k=3

K

yk,K
−1/2�

k=3

K

h�yk���
y3,…,yK

. �24�

When carrying out the y1 and y2 average in Eq. �23� the
constant and the linear terms vanish and so does the term
with i=2, j=0. We are left with

G��,�y1 − y2�2 − 2� = K−1�c1g11 + c2g02� ,

where

c1 = ���y1 − y2�2 − 2��y1 + y2��h�y1� + h�y2���y1,y2

= 2��y1
2 − 3�y1h�y1��y1

�25�

c2 = ���y1
2 − 1�h2�y1��y1

− 2�y1h�y1��y1

2 � . �26�

To determine the coefficients g11 and g02 from Eq. �24�,
we now argue that the joint density of z1=K−1/2�k=3

K yk and
z�=K−1/2�k=3

K h�yk� is Gaussian for large K, which reduces the
calculations to two-dimensional integrals.

The stationarity condition �19� implies that �→0 with
increasing K, since G��� ,1� stays finite. This considerably
simplifies the coefficients �g11,g02� and after some algebra
we obtain that for ���c�K�

�2 = 1 −
�c�K�

�
, �27�

whereas �=0 for ���c�K�. The critical value �c�K� is given
in terms of averages over two independent zero mean and
unit variance Gaussians z1 and z2:

�c�K� =
4K�F�z1,z��2�z1,z2

�c1F�1,1��z1,z�� + c2F�0,2��z1,z���z1,z2

2

with

z� � �z1 + �1 − �2z2, � = �y1h�y1��y1
, �28�

where F�m,n��x̂ , ŷ�= ��m /�xm���n /�yn�F�x ,y��x=x̂,y=ŷ.
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VI. OPTIMAL WEIGHT FUNCTION

Equation �28� enables us to compute the optimal weight
function in the limit K→, as well as the achievable gener-
alization error and the minimal value of �c.

To find the optimal weight function F, we first use partial
integration for Gaussians �f��z1��z1

= �z1f�z1��z1
, to eliminate

the partial derivatives of F in Eq. �28�. This yields

�c�K� = 4K�1 − �2�
�F�z1,z��2�z1,z2

���z1,z2�F�z1,z���z1,z2

2 , �29�

where ��z1 ,z2�=c1z1z2+ ��c2−c1�� /�1−�2��z2
2−1�.

It is important to recall how the activation of the output
unit g limits the possible F. If the committee machine �1�
uses g�z�=sgn�z�, the field at the output unit z� can only be
taken into account via its sign, while for invertible transfer
functions at the output unit no restriction apply. Hence we
have to treat the two cases separately in the following.

Case I: Regression with an SCM. Here, the Cauchy-
Schwartz inequality implies that the optimal F satisfies
F�z1 ,z�����z1 ,z2�. In more explicit terms

F�x,y� = �c2 − c1�� �y − �x�2

1 − �2 − 1� + c1x�y − �x� �30�

and the optimal value of �c is

�c,min =
4K�1 − �2�2

�1 + �2�2c1
2 − 4�c1c2 + 2c2

2 . �31�

For h�x�= l�erf��x�, this can be evaluated analytically and
the result is shown in Fig. 3. For the limiting cases of small
and large � we find

�c,min

K
=

1

24
+

�2

8
+ O��4� for small � ,

�c,min

K
= �

2
− 1� −

1

�
+ O��−2� for large � . �32�

The result for small � is remarkable since it predicts, that
for the optimal F the relevant space is more and more effi-

ciently detected, as the nonlinearity decreases. But in the
limit �→0 the hidden unit activation function becomes lin-
ear, the teacher becomes a perceptron with weight vector Bav
and the specialized overlap � must be zero. So the findings
for the optimal F imply that the large K and small � limit do
not commute. This is not surprising, as the critical �c,min, see
Eq. �31�, is undefined at �=0, where both the numerator and
the denominator are zero. So with � decreasing to zero,
larger and larger values of K are needed for our theory to
hold.

While including the perceptron field in the weight func-
tion is not necessary for successful learning in the SCM, it
can decrease the critical value �c significantly. The optimal
weight function under the restriction that it must not depend
on x satisfies F�1,1��x ,y�=0 in Eq. �28�. In analogy to the
optimization in the unrestricted case one obtains, then

F�x,y� = 1 − y2, �33�

�c

K
= 1/�8�4� + O��−2� for small � �34�

with the numerical example �c=1.96 K at �=1 as compared
to �c=0.132 K for the optimal weight function �30�.

Case II: Classification with an HCM. If we want to mini-
mize �c under the restriction g�x�=sgn�x� of the teacher out-
put �1�, the weight function F�z1 ,z�� may depend on z� only
via sgn�z��. Further, by the symmetries of the problem one
can show that the optimal F satisfies F�z1 ,1�=F�−z1 ,−1�,
i.e., F is of the form F�z1 ,z��= f(sgn�z��z1). It is convenient
to split f in an even part f+ and odd part f−. Then the inte-
gration over z2 in Eq. �29� is easily done. We get

�c =
2K��1 − �2�3

�c1 − c2��2 �exp−
1

2

z1
2

��2�z1f−�z1��
z1

−1

�� f−�z1�2 + f+�z1�2 + 2 erf z1

�2��
� f−�z1�f+�z1��

z1

,

�35�

where ��=��−2−1. As f+ appears only in the numerator,
optimizing f+ for a given f− yields

f+�z� = − erf���2���−1z1�f−�z1� . �36�

Inserting this result in Eq. �35�, one can again apply the
Cauchy-Schwartz inequality to determine the optimal f−. Fi-
nally, we find that the optimal F is F�x ,y�= f(x sgn�y�) with

f�z1� =

z1exp−
z1

2

2��2�
1 + erf z1

�2��
� . �37�

The lowest possible value of �c for classification is thus

�c,min =
2K��1 − �2�3

�c1 − c2�����z1�2�z1

, �38�

where

FIG. 3. The critical number of examples �c as it results from the
optimal weight function in the SCM with g�x�=x ��c,lin, solid line,
left axis� and the HCM with g�x�=sgn�x� ��c,sgn, dashed line, right
axis�. The graphs display the dependence on the nonlinearity � in
the hidden unit activation h�x�= l�erf��x�.
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��z1� =

z1exp−
z1

2

2��2�
�1 − erf z1

�2��
� .

For h= l�erf��x� the resulting �c is shown in Fig. 3. The
lowest values of �c,min are found for hidden units with
��1.

The theoretical predictions for the corresponding sub-
space overlap ���� in SCM and HCM are shown in Figs. 4
and 5, respectively, for example values of the nonlinearity �.
Simulations with K=33 show good agreement for ���c,
whereas deviations are larger in the vicinity of the critical
value �c as expected.

VII. CONCLUSIONS

In summary, we have presented and discussed an efficient
training algorithm for multilayer network architectures, typi-
cal properties of which can be analyzed exactly in the ther-
modynamic limit. Principal component analysis techniques
are used to reduce the effective dimension of the learning
problem in a first step. The necessary network specialization
is then achieved in a lower-dimensional space of adaptive
coefficients. We have shown that the basic idea of the algo-
rithm can be applied in the context of, both, regression and
classification problems.

Our results demonstrate that the algorithm is capable of
yielding good generalization behavior for a number of train-
ing examples which is linear in the number of adaptive net-
work parameters. In particular, a priori specialization is not
required for the successful training of a given architecture.
The analysis shows, furthermore, that the above features per-
sist in the limit of infinitely many hidden units. Variational
methods can be used to optimize the algorithms with respect
to the expected, typical learning curves.

A comment is in place with respect to potential practical
applications of the algorithm. We have assumed throughout
the discussion that input data was generated according to an
isotropic distribution. In practical applications one would
clearly expect this assumption to be violated. However, it is
always possible to whiten raw data by a linear transformation
which yields a representation of the data with no structure on
the level of second order statistics. Hereafter, our procedure
can be applied.

We believe that our work should open new directions of
research. Perhaps the most attractive feature of our prescrip-
tion is that the number of hidden units need not be fixed prior
to learning. The PCA procedure is performed without as-
sumptions about the rule complexity. However, it provides
information about the appropriate number K of hidden units,
as we expect K−1 eigenvalues to separate from the rest of
the spectrum. Hence, we suggest that our prescription could
serve as a tool for, both, model selection and the actual train-
ing. Forthcoming investigations will focus on this aspect of
the procedure.
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APPENDIX: FREE ENERGY VIA REPLICA
CALCULATION

In the thermodynamic limit, the integration over Xa is
turned into an order parameter integration using xa=Xa

T� and
the field with the teacher vector y=BT�. The order param-
eters are

�xayi�x,y = Ri
a = BiXa, �A1�

�xaxb�x = Qab = Xa
TXb. �A2�

Rewriting the integration over the N-dimensional vectors as
an integration over the order parameters is easily done.

FIG. 4. Regression with an SCM with many hidden units and
optimized weight function: subspace overlap � for g�x�=x ,h�x�
= l�erf��x�. Theoretical prediction for K=33,�=3 �solid line� and
K=33,�=40 �dashed line�. Simulation results were averaged over
five independent runs �N=1200� for K=33,�=3 �circles�, and �
=40 �squares�. Standard error bars are smaller than the symbol size
for all ��40.

FIG. 5. Classification with an HCM with many hidden units and
optimized weight function: subspace overlap � for g�x�
=sgn�x� ,h�x�= l�erf��x�. Theoretical prediction for K=33,�=1
�thick line� and K=33,�=100 �thin line�. Averages over five simu-
lation runs �N=450� for K=33,�=1 �filled symbols�, and �=100
�open symbols�. Error bars are omitted for better readability.
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This boils down to the evaluation of the integrand at the
extremum

lim
N→

�ln Z�P
N

= lim
N→

lim
n→0

�n
�Zn�P

N

= lim
N→

lim
n→0

�n� �
a=1

n

�
i=1

K

dRi
a�

b=1

n

dQab

�exp
N��KGT�R,Q� + GS�R,Q���/N

= lim
n→0

�n max
Ri

a,Qab
exp��KGT�R,Q� + GS�R,Q�� ,

where �= P / �KN�,

GT =
1

	̂
�

0

�

d	̂ � ln��
a=1

n

exp��xa
2F„yp�	̂�, f0�y�…��

x,y,�

� ,

�A3�

GS =
1

N
ln� dX�n���Ri

a − Xa
TBi���Qab − Xa

TXb�� . �A4�

Following Ref. �12�, we write the entropy term as a de-
terminant of a matrix GS= 1

2 ln det�M�, where

M =�
1 ¯ 0 R1

1
¯ R1

n

� � � � � �
0 ¯ 1 RK

1
¯ RK

n

R1
1

¯ RK
1 Q11

¯ Q1n

� � � � � �
R1

n
¯ RK

n Qn1
¯ Qnn

� .

Restricting the maximization to the replica symmetric sub-
space of order parameters

Qab = �ab + �1 − �ab�q ,

Ri
a = Ri �A5�

and writing R= �R1 ,R2 ,… ,RK�, we evaluate the determinant
and get

GS =
1

2
ln det��ab + �1 − �ab�q − RTR�a,b=1,2,3,…,n

=
n

2
ln�1 − q� +

1

2
ln1 + n

q − RTR

1 − q
� . �A6�

In the limit n→0, the derivative with respect to n yields

lim
n→0

�nGS =
1

2
ln�1 − q� +

q − RTR

1 − q
� . �A7�

Evaluating the energy term, the fields x, which are corre-
lated with y as given in Eq. �A1� are expressed via indepen-
dent random variables

xa = RTy + �q − RTRz + �1 − qza�, �A8�

where y ,z ,z� are independent Gaussian quantities with zero
mean and unit variance. Having performed the average over
the replica dependent variables z�, we obtain an nth power in
the argument of the logarithm instead of a product over n
terms:

GT =
n

�
�

0

�

d	̂ln�exp �F„yp�	̂�, f0�y�…x1�
2

1 − 2��1 − q�F„yp�	̂�, f0�y�…
�

��1 − 2��1 − q�F„yp�	̂�, f0�y�…�−1/2�
y,z,�

, �A9�

where x1�=RTy+��q−RTR�z. Now the derivative with respect
to n at n=0 is taken, and the average over z is performed, to
obtain the result for the energy term

lim
n→0

�nGT =
1

�
�

0

�

d	̂
1

2� 2�F„yp�	̂�, f0�y�…
1 − 2�F„yp�	̂�, f0�y�…

��q − RTR + �RTy�2�

+ ln�1 − 2�F„yp�	̂�, f0�y�…��
y,�

, �A10�

where �=��1−q�. We are interested in the limiting case �
→, and it turns out the limiting process leaving � fixed
balances entropy and energy terms correctly. Given a fixed
overlap R with the teacher, the vectors in the different repli-
cas tend to be parallel as �→. The leading order terms of
Eqs. �A7� and �A10� yield

lim
�→

lim
n→0

�n
GT

�
= G��,1 − RTR + �RTy�2� , �A11�

lim
�→

lim
n→0

�n
GS

�
=

1 − RTR

2�
, �A12�

where G�� , ¯ � is defined in the text. Together, we obtain

�ln Z�P
�N

= maxRmin��1 − RTR

2�
+ �KG��,1 − RTR + �RTy�2�� ,

�A13�

from which we proceed in Sec. III.
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